Uses of Interface
org.cicirello.search.SimpleLocalMetaheuristic
Package
Description
This package includes classes and interfaces related to implementing metaheuristic search
algorithms in general, rather than specific to a particular metaheuristic.
This package includes classes and interfaces directly related to implementing hill climbers.
This package includes classes and interfaces directly related to implementing simulated
annealing.
-
Uses of SimpleLocalMetaheuristic in org.cicirello.search
-
Uses of SimpleLocalMetaheuristic in org.cicirello.search.hc
Modifier and TypeClassDescriptionfinal class
FirstDescentHillClimber<T extends Copyable<T>>
This class implements first descent hill climbing.final class
SteepestDescentHillClimber<T extends Copyable<T>>
This class implements steepest descent hill climbing. -
Uses of SimpleLocalMetaheuristic in org.cicirello.search.sa
ModifierConstructorDescriptionSimulatedAnnealing
(IntegerCostOptimizationProblem<T> problem, UndoableMutationOperator<T> mutation, Initializer<T> initializer, ProgressTracker<T> tracker, SimpleLocalMetaheuristic<T> hc) Creates a SimulatedAnnealing search instance for integer-valued optimization problems, with a default annealing schedule ofSelfTuningLam
, which is the Self-Tuning Lam annealing schedule of Cicirello (2021), and which runs a hill climber as a post-processing step.SimulatedAnnealing
(IntegerCostOptimizationProblem<T> problem, UndoableMutationOperator<T> mutation, Initializer<T> initializer, AnnealingSchedule anneal, ProgressTracker<T> tracker, SimpleLocalMetaheuristic<T> hc) Creates a SimulatedAnnealing search instance for integer-valued optimization problems that runs a hill climber as a post-processing step.SimulatedAnnealing
(IntegerCostOptimizationProblem<T> problem, UndoableMutationOperator<T> mutation, Initializer<T> initializer, AnnealingSchedule anneal, SimpleLocalMetaheuristic<T> hc) Creates a SimulatedAnnealing search instance for integer-valued optimization problems that runs a hill climber as a post-processing step.SimulatedAnnealing
(IntegerCostOptimizationProblem<T> problem, UndoableMutationOperator<T> mutation, Initializer<T> initializer, SimpleLocalMetaheuristic<T> hc) Creates a SimulatedAnnealing search instance for integer-valued optimization problems, with a default annealing schedule ofSelfTuningLam
, which is the Self-Tuning Lam annealing schedule of Cicirello (2021), and which runs a hill climber as a post-processing step.SimulatedAnnealing
(OptimizationProblem<T> problem, UndoableMutationOperator<T> mutation, Initializer<T> initializer, ProgressTracker<T> tracker, SimpleLocalMetaheuristic<T> hc) Creates a SimulatedAnnealing search instance for real-valued optimization problems, with a default annealing schedule ofSelfTuningLam
, which is the Self-Tuning Lam annealing schedule of Cicirello (2021), and which runs a hill climber as a post-processing step.SimulatedAnnealing
(OptimizationProblem<T> problem, UndoableMutationOperator<T> mutation, Initializer<T> initializer, AnnealingSchedule anneal, ProgressTracker<T> tracker, SimpleLocalMetaheuristic<T> hc) Creates a SimulatedAnnealing search instance for real-valued optimization problems that runs a hill climber as a post-processing step.SimulatedAnnealing
(OptimizationProblem<T> problem, UndoableMutationOperator<T> mutation, Initializer<T> initializer, AnnealingSchedule anneal, SimpleLocalMetaheuristic<T> hc) Creates a SimulatedAnnealing search instance for real-valued optimization problems that runs a hill climber as a post-processing step.SimulatedAnnealing
(OptimizationProblem<T> problem, UndoableMutationOperator<T> mutation, Initializer<T> initializer, SimpleLocalMetaheuristic<T> hc) Creates a SimulatedAnnealing search instance for real-valued optimization problems, with a default annealing schedule ofSelfTuningLam
, which is the Self-Tuning Lam annealing schedule of Cicirello (2021), and which runs a hill climber as a post-processing step.