java.lang.Object
org.cicirello.search.evo.LinearRankSelection
 All Implemented Interfaces:
Splittable<SelectionOperator>
,SelectionOperator
This class implements linear rank selection. Linear rank selection begins be determining the rank
of each population member, where the least fit member of the population has rank 1, and the most
fit member of the population has rank N, where the population size is N. During selection, the
population member with rank r is chosen randomly with probability proportional to: 2  c + 2(r 
1)(c  1)/(N  1). The c is a realvalued parameter that must be in the interval [1, 2]. When c
is equal to 1, all population members are equally likely chosen. When c is equal to 2, the
expected number of times the most fit population member will be chosen is 2, the least fit member
won't be selected at all, and the expected number of times the other population members will be
chosen in a generation will vary between 0 and 2 based upon rank. To avoid a probability of 0 of
choosing the least fit population member, then ensure that c is less than 2. To ensure that the
selection operator doesn't degenerate into a uniform random selection, then set c greater than 1.
The value of c can be interpreted as the expected number of times the most fit population member
will be selected in a generation.
Linear rank selection was introduced by Baker (1985). According to "An Introduction to Genetic Algorithms" (Melanie Mitchell, 1998), Baker recommended c = 1.1.
The runtime to select M population members from a population of size N is O(N lg N + M lg N).

Constructor Summary

Method Summary
Modifier and TypeMethodDescriptionfinal void
select
(PopulationFitnessVector.Double fitnesses, int[] selected) Selects a set of members of the population based on fitness.final void
select
(PopulationFitnessVector.Integer fitnesses, int[] selected) Selects a set of members of the population based on fitness.split()
Generates a functionally identical copy of this object, for use in multithreaded implementations of search algorithms.Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
Methods inherited from interface org.cicirello.search.evo.SelectionOperator
init

Constructor Details

LinearRankSelection
public LinearRankSelection(double c) Construct a linear rank selection operator. Parameters:
c
 The expected number of times the most fit population member should be selected during one generation, which must be in the interval [1.0, 2.0]. Throws:
IllegalArgumentException
 if c is less than 1 or greater than 2.


Method Details

split
Description copied from interface:Splittable
Generates a functionally identical copy of this object, for use in multithreaded implementations of search algorithms. The state of the object that is returned may or may not be identical to that of the original. Thus, this is a distinct concept from the functionality of theCopyable
interface. Classes that implement this interface must ensure that the object returned performs the same functionality, and that it does not share any state data that would be either unsafe or inefficient for concurrent access by multiple threads. The split method is allowed to simply return the this reference, provided that it is both safe and efficient for multiple threads to share a single copy of the Splittable object. The intention is to provide a multithreaded search with the capability to provide spawned threads with their own distinct search operators. Such multithreaded algorithms can call the split method for each thread it spawns to generate a functionally identical copy of the operator, but with independent state. Returns:
 A functionally identical copy of the object, or a reference to this if it is both safe and efficient for multiple threads to share a single instance of this Splittable object.

select
Description copied from interface:SelectionOperator
Selects a set of members of the population based on fitness. Implementations should ensure that the array of indexes of population members is in a random order. For some selection operators, this required behavior is met by definition (e.g., the common fitness proportionate selection will have this behavior as is). But other selection operators may require randomizing the array of indexes after selection. For example, the obvious implementation of stochastic universal sampling will likely have all copies of an individual population member ordered together, and thus will require a shuffling of the array before returning. Specified by:
select
in interfaceSelectionOperator
 Parameters:
fitnesses
 A vector of fitnesses of the members of the population.selected
 An array for the result. The selection operator should select selected.length members of the population based on fitnesses, populating selected with the indexes of the chosen members. Note that selected.length may be different than the fitnesses.size().

select
Description copied from interface:SelectionOperator
Selects a set of members of the population based on fitness. Implementations should ensure that the array of indexes of population members is in a random order. For some selection operators, this required behavior is met by definition (e.g., the common fitness proportionate selection will have this behavior as is). But other selection operators may require randomizing the array of indexes after selection. For example, the obvious implementation of stochastic universal sampling will likely have all copies of an individual population member ordered together, and thus will require a shuffling of the array before returning. Specified by:
select
in interfaceSelectionOperator
 Parameters:
fitnesses
 A vector of fitnesses of the members of the population.selected
 An array for the result. The selection operator should select selected.length members of the population based on fitnesses, populating selected with the indexes of the chosen members. Note that selected.length may be different than the fitnesses.size().
