java.lang.Object
org.cicirello.search.sa.ModifiedLamOriginal
- All Implemented Interfaces:
Splittable<AnnealingSchedule>
,AnnealingSchedule
This class implements the Modified Lam annealing schedule, which dynamically adjusts simulated
annealing's temperature parameter up and down to either decrease or increase the neighbor
acceptance rate as necessary to attempt to match a theoretically determined ideal. The Modified
Lam annealing schedule is a practical realization of Lam and Delosme's (1988) schedule, refined
first by Swartz (1993) and then further by Boyan (1998). For complete details of the Modified Lam
schedule, along with its origins and rationale, see the following references:
- Lam, J., and Delosme, J. 1988. Performance of a new annealing schedule. In Proc. 25th ACM/IEEE DAC, 306–311.
- Swartz, W. P. 1993. Automatic Layout of Analog and Digital Mixed Macro/Standard Cell Integrated Circuits. Ph.D. Dissertation, Yale University.
- Boyan, J. A. 1998. Learning Evaluation Functions for Global Optimization. Ph.D. Dissertation, Carnegie Mellon University, Pittsburgh, PA.
This class, ModifiedLamOriginal, is a direct implementation of the Modified Lam schedule as
described in the reference to Boyan above. In most cases, if you want to use the Modified Lam
schedule, you should prefer the ModifiedLam
class, which includes a variety of
optimizations to speed up the updating of schedule parameters. This ModifiedLamOriginal class is
included in the library for investigating the benefit of the optimizations incorporated into the
ModifiedLam
class (see that class's documentation for a description of the specific
optimizations made).
The accept(double, double)
methods of this class use the classic, and most common, Boltzmann
distribution for determining whether to accept a neighbor.
-
Constructor Summary
-
Method Summary
Modifier and TypeMethodDescriptionboolean
accept
(double neighborCost, double currentCost) Determine whether or not to accept a neighboring solution based on its cost and the current cost, both passed as parameters.void
init
(int maxEvals) Perform any initialization necessary for the annealing schedule at to the start of a run of simulated annealing.split()
Generates a functionally identical copy of this object, for use in multithreaded implementations of search algorithms.
-
Constructor Details
-
ModifiedLamOriginal
public ModifiedLamOriginal()Default constructor. The Modified Lam annealing schedule, unlike other annealing schedules, has no control parameters other than the run length (the maxEvals parameter of theinit(int)
method), so no parameters need be passed to the constructor.
-
-
Method Details
-
init
public void init(int maxEvals) Description copied from interface:AnnealingSchedule
Perform any initialization necessary for the annealing schedule at to the start of a run of simulated annealing. This includes initializing the temperature parameter. This method is called once by implementations of simulated annealing at the start of the run. Implementations of simulated annealing that perform reannealing will also call this once at the start of each reanneal.- Specified by:
init
in interfaceAnnealingSchedule
- Parameters:
maxEvals
- The maximum length of the run of simulated annealing about to start. Some annealing schedules depend upon prior knowledge of run length. For those annealing schedules that don't depend upon run length, this parameter is ignored.
-
accept
public boolean accept(double neighborCost, double currentCost) Description copied from interface:AnnealingSchedule
Determine whether or not to accept a neighboring solution based on its cost and the current cost, both passed as parameters. Lower cost indicates better solution. This method must also update the temperature and any other state data related to the annealing schedule.- Specified by:
accept
in interfaceAnnealingSchedule
- Parameters:
neighborCost
- The cost of the neighboring solution under consideration.currentCost
- The cost of the current solution.- Returns:
- true if simulated annealing should accept the neighbor, and false otherwise.
-
split
Description copied from interface:Splittable
Generates a functionally identical copy of this object, for use in multithreaded implementations of search algorithms. The state of the object that is returned may or may not be identical to that of the original. Thus, this is a distinct concept from the functionality of theCopyable
interface. Classes that implement this interface must ensure that the object returned performs the same functionality, and that it does not share any state data that would be either unsafe or inefficient for concurrent access by multiple threads. The split method is allowed to simply return the this reference, provided that it is both safe and efficient for multiple threads to share a single copy of the Splittable object. The intention is to provide a multithreaded search with the capability to provide spawned threads with their own distinct search operators. Such multithreaded algorithms can call the split method for each thread it spawns to generate a functionally identical copy of the operator, but with independent state.- Specified by:
split
in interfaceSplittable<AnnealingSchedule>
- Returns:
- A functionally identical copy of the object, or a reference to this if it is both safe and efficient for multiple threads to share a single instance of this Splittable object.
-