Uses of Class
org.cicirello.search.ProgressTracker
Package
Description
This package includes classes and interfaces related to implementing metaheuristic search
algorithms in general, rather than specific to a particular metaheuristic.
This package includes multithreaded search implementations, as well as classes and interfaces
related to implementing multithreaded metaheuristics.
This package includes classes and interfaces directly related to implementing evolutionary
algorithms.
This package includes classes and interfaces directly related to implementing hill climbers.
This package includes classes and interfaces related to implementing multistart metaheuristics
(i.e., metaheuristics that periodically restart, and return the best solution across a number of
such restarts).
This package includes classes and interfaces directly related to implementing simulated
annealing.
This package includes classes and interfaces directly related to implementing stochastic sampling
algorithms.
-
Uses of ProgressTracker in org.cicirello.search
Modifier and TypeMethodDescriptionTrackableSearch.getProgressTracker()
Gets theProgressTracker
object that is in use for tracking search progress.Modifier and TypeMethodDescriptionvoid
TrackableSearch.setProgressTracker
(ProgressTracker<T> tracker) Sets theProgressTracker
object that is in use for tracking search progress. -
Uses of ProgressTracker in org.cicirello.search.concurrent
Modifier and TypeMethodDescriptionfinal ProgressTracker<T>
ParallelMetaheuristic.getProgressTracker()
final ProgressTracker<T>
TimedParallelMultistarter.getProgressTracker()
Modifier and TypeMethodDescriptionfinal void
ParallelMetaheuristic.setProgressTracker
(ProgressTracker<T> tracker) final void
TimedParallelMultistarter.setProgressTracker
(ProgressTracker<T> tracker) -
Uses of ProgressTracker in org.cicirello.search.evo
Modifier and TypeMethodDescriptionfinal ProgressTracker<T>
OnePlusOneEvolutionaryAlgorithm.getProgressTracker()
Modifier and TypeMethodDescriptionfinal void
OnePlusOneEvolutionaryAlgorithm.setProgressTracker
(ProgressTracker<T> tracker) ModifierConstructorDescriptionAdaptiveEvolutionaryAlgorithm
(int n, MutationOperator<T> mutation, CrossoverOperator<T> crossover, Initializer<T> initializer, FitnessFunction.Double<T> f, SelectionOperator selection, int eliteCount, ProgressTracker<T> tracker) Constructs and initializes the evolutionary algorithm.AdaptiveEvolutionaryAlgorithm
(int n, MutationOperator<T> mutation, CrossoverOperator<T> crossover, Initializer<T> initializer, FitnessFunction.Double<T> f, SelectionOperator selection, ProgressTracker<T> tracker) Constructs and initializes the evolutionary algorithm.AdaptiveEvolutionaryAlgorithm
(int n, MutationOperator<T> mutation, CrossoverOperator<T> crossover, Initializer<T> initializer, FitnessFunction.Integer<T> f, SelectionOperator selection, int eliteCount, ProgressTracker<T> tracker) Constructs and initializes the evolutionary algorithm.AdaptiveEvolutionaryAlgorithm
(int n, MutationOperator<T> mutation, CrossoverOperator<T> crossover, Initializer<T> initializer, FitnessFunction.Integer<T> f, SelectionOperator selection, ProgressTracker<T> tracker) Constructs and initializes the evolutionary algorithm.AdaptiveMutationOnlyEvolutionaryAlgorithm
(int n, MutationOperator<T> mutation, Initializer<T> initializer, FitnessFunction.Double<T> f, SelectionOperator selection, int eliteCount, ProgressTracker<T> tracker) Constructs and initializes the evolutionary algorithm.AdaptiveMutationOnlyEvolutionaryAlgorithm
(int n, MutationOperator<T> mutation, Initializer<T> initializer, FitnessFunction.Double<T> f, SelectionOperator selection, ProgressTracker<T> tracker) Constructs and initializes the evolutionary algorithm.AdaptiveMutationOnlyEvolutionaryAlgorithm
(int n, MutationOperator<T> mutation, Initializer<T> initializer, FitnessFunction.Integer<T> f, SelectionOperator selection, int eliteCount, ProgressTracker<T> tracker) Constructs and initializes the evolutionary algorithm.AdaptiveMutationOnlyEvolutionaryAlgorithm
(int n, MutationOperator<T> mutation, Initializer<T> initializer, FitnessFunction.Integer<T> f, SelectionOperator selection, ProgressTracker<T> tracker) Constructs and initializes the evolutionary algorithm.GenerationalEvolutionaryAlgorithm
(int n, MutationOperator<T> mutation, double mutationRate, CrossoverOperator<T> crossover, double crossoverRate, Initializer<T> initializer, FitnessFunction.Double<T> f, SelectionOperator selection, int eliteCount, ProgressTracker<T> tracker) Constructs and initializes the evolutionary algorithm.GenerationalEvolutionaryAlgorithm
(int n, MutationOperator<T> mutation, double mutationRate, CrossoverOperator<T> crossover, double crossoverRate, Initializer<T> initializer, FitnessFunction.Double<T> f, SelectionOperator selection, ProgressTracker<T> tracker) Constructs and initializes the evolutionary algorithm.GenerationalEvolutionaryAlgorithm
(int n, MutationOperator<T> mutation, double mutationRate, CrossoverOperator<T> crossover, double crossoverRate, Initializer<T> initializer, FitnessFunction.Integer<T> f, SelectionOperator selection, int eliteCount, ProgressTracker<T> tracker) Constructs and initializes the evolutionary algorithm.GenerationalEvolutionaryAlgorithm
(int n, MutationOperator<T> mutation, double mutationRate, CrossoverOperator<T> crossover, double crossoverRate, Initializer<T> initializer, FitnessFunction.Integer<T> f, SelectionOperator selection, ProgressTracker<T> tracker) Constructs and initializes the evolutionary algorithm.GenerationalEvolutionaryAlgorithmMutuallyExclusiveOperators
(int n, MutationOperator<T> mutation, double mutationRate, CrossoverOperator<T> crossover, double crossoverRate, Initializer<T> initializer, FitnessFunction.Double<T> f, SelectionOperator selection, int eliteCount, ProgressTracker<T> tracker) Constructs and initializes the evolutionary algorithm for an EA utilizing both a crossover operator and a mutation operator, such that the genetic operators follow a mutually exclusive property where each population member is involved in at most one of those operations in a single generation.GenerationalEvolutionaryAlgorithmMutuallyExclusiveOperators
(int n, MutationOperator<T> mutation, double mutationRate, CrossoverOperator<T> crossover, double crossoverRate, Initializer<T> initializer, FitnessFunction.Double<T> f, SelectionOperator selection, ProgressTracker<T> tracker) Constructs and initializes the evolutionary algorithm for an EA utilizing both a crossover operator and a mutation operator, such that the genetic operators follow a mutually exclusive property where each population member is involved in at most one of those operations in a single generation.GenerationalEvolutionaryAlgorithmMutuallyExclusiveOperators
(int n, MutationOperator<T> mutation, double mutationRate, CrossoverOperator<T> crossover, double crossoverRate, Initializer<T> initializer, FitnessFunction.Integer<T> f, SelectionOperator selection, int eliteCount, ProgressTracker<T> tracker) Constructs and initializes the evolutionary algorithm for an EA utilizing both a crossover operator and a mutation operator, such that the genetic operators follow a mutually exclusive property where each population member is involved in at most one of those operations in a single generation.GenerationalEvolutionaryAlgorithmMutuallyExclusiveOperators
(int n, MutationOperator<T> mutation, double mutationRate, CrossoverOperator<T> crossover, double crossoverRate, Initializer<T> initializer, FitnessFunction.Integer<T> f, SelectionOperator selection, ProgressTracker<T> tracker) Constructs and initializes the evolutionary algorithm for an EA utilizing both a crossover operator and a mutation operator, such that the genetic operators follow a mutually exclusive property where each population member is involved in at most one of those operations in a single generation.GenerationalMutationOnlyEvolutionaryAlgorithm
(int n, MutationOperator<T> mutation, double mutationRate, Initializer<T> initializer, FitnessFunction.Double<T> f, SelectionOperator selection, int eliteCount, ProgressTracker<T> tracker) Constructs and initializes the evolutionary algorithm with mutation only.GenerationalMutationOnlyEvolutionaryAlgorithm
(int n, MutationOperator<T> mutation, double mutationRate, Initializer<T> initializer, FitnessFunction.Double<T> f, SelectionOperator selection, ProgressTracker<T> tracker) Constructs and initializes the evolutionary algorithm with mutation only.GenerationalMutationOnlyEvolutionaryAlgorithm
(int n, MutationOperator<T> mutation, double mutationRate, Initializer<T> initializer, FitnessFunction.Integer<T> f, SelectionOperator selection, int eliteCount, ProgressTracker<T> tracker) Constructs and initializes the evolutionary algorithm with mutation only.GenerationalMutationOnlyEvolutionaryAlgorithm
(int n, MutationOperator<T> mutation, double mutationRate, Initializer<T> initializer, FitnessFunction.Integer<T> f, SelectionOperator selection, ProgressTracker<T> tracker) Constructs and initializes the evolutionary algorithm with mutation only.GeneticAlgorithm
(int n, int bitLength, FitnessFunction.Double<BitVector> f, double mutationRate, CrossoverOperator<BitVector> crossover, double crossoverRate, SelectionOperator selection, int eliteCount, ProgressTracker<BitVector> tracker) Initializes a genetic algorithm with a generational model where children replace the parents, using the standard bit flip mutation.GeneticAlgorithm
(int n, int bitLength, FitnessFunction.Double<BitVector> f, double mutationRate, CrossoverOperator<BitVector> crossover, double crossoverRate, SelectionOperator selection, ProgressTracker<BitVector> tracker) Initializes a genetic algorithm with a generational model where children replace the parents, using the standard bit flip mutation.GeneticAlgorithm
(int n, int bitLength, FitnessFunction.Integer<BitVector> f, double mutationRate, CrossoverOperator<BitVector> crossover, double crossoverRate, SelectionOperator selection, int eliteCount, ProgressTracker<BitVector> tracker) Initializes a genetic algorithm with a generational model where children replace the parents, using the standard bit flip mutation.GeneticAlgorithm
(int n, int bitLength, FitnessFunction.Integer<BitVector> f, double mutationRate, CrossoverOperator<BitVector> crossover, double crossoverRate, SelectionOperator selection, ProgressTracker<BitVector> tracker) Initializes a genetic algorithm with a generational model where children replace the parents, using the standard bit flip mutation.GeneticAlgorithm
(int n, Initializer<BitVector> initializer, FitnessFunction.Double<BitVector> f, double mutationRate, CrossoverOperator<BitVector> crossover, double crossoverRate, SelectionOperator selection, int eliteCount, ProgressTracker<BitVector> tracker) Initializes a genetic algorithm with a generational model where children replace the parents, using the standard bit flip mutation.GeneticAlgorithm
(int n, Initializer<BitVector> initializer, FitnessFunction.Double<BitVector> f, double mutationRate, CrossoverOperator<BitVector> crossover, double crossoverRate, SelectionOperator selection, ProgressTracker<BitVector> tracker) Initializes a genetic algorithm with a generational model where children replace the parents, using the standard bit flip mutation.GeneticAlgorithm
(int n, Initializer<BitVector> initializer, FitnessFunction.Integer<BitVector> f, double mutationRate, CrossoverOperator<BitVector> crossover, double crossoverRate, SelectionOperator selection, int eliteCount, ProgressTracker<BitVector> tracker) Initializes a genetic algorithm with a generational model where children replace the parents, using the standard bit flip mutation.GeneticAlgorithm
(int n, Initializer<BitVector> initializer, FitnessFunction.Integer<BitVector> f, double mutationRate, CrossoverOperator<BitVector> crossover, double crossoverRate, SelectionOperator selection, ProgressTracker<BitVector> tracker) Initializes a genetic algorithm with a generational model where children replace the parents, using the standard bit flip mutation.MutationOnlyGeneticAlgorithm
(int n, int bitLength, FitnessFunction.Double<BitVector> f, double mutationRate, SelectionOperator selection, int eliteCount, ProgressTracker<BitVector> tracker) Initializes a mutation-only genetic algorithm with a generational model where children replace the parents, using the standard bit flip mutation.MutationOnlyGeneticAlgorithm
(int n, int bitLength, FitnessFunction.Double<BitVector> f, double mutationRate, SelectionOperator selection, ProgressTracker<BitVector> tracker) Initializes a mutation-only genetic algorithm with a generational model where children replace the parents, using the standard bit flip mutation.MutationOnlyGeneticAlgorithm
(int n, int bitLength, FitnessFunction.Integer<BitVector> f, double mutationRate, SelectionOperator selection, int eliteCount, ProgressTracker<BitVector> tracker) Initializes a mutation-only genetic algorithm with a generational model where children replace the parents, using the standard bit flip mutation.MutationOnlyGeneticAlgorithm
(int n, int bitLength, FitnessFunction.Integer<BitVector> f, double mutationRate, SelectionOperator selection, ProgressTracker<BitVector> tracker) Initializes a mutation-only genetic algorithm with a generational model where children replace the parents, using the standard bit flip mutation.MutationOnlyGeneticAlgorithm
(int n, Initializer<BitVector> initializer, FitnessFunction.Double<BitVector> f, double mutationRate, SelectionOperator selection, int eliteCount, ProgressTracker<BitVector> tracker) Initializes a mutation-only genetic algorithm with a generational model where children replace the parents, using the standard bit flip mutation.MutationOnlyGeneticAlgorithm
(int n, Initializer<BitVector> initializer, FitnessFunction.Double<BitVector> f, double mutationRate, SelectionOperator selection, ProgressTracker<BitVector> tracker) Initializes a mutation-only genetic algorithm with a generational model where children replace the parents, using the standard bit flip mutation.MutationOnlyGeneticAlgorithm
(int n, Initializer<BitVector> initializer, FitnessFunction.Integer<BitVector> f, double mutationRate, SelectionOperator selection, int eliteCount, ProgressTracker<BitVector> tracker) Initializes a mutation-only genetic algorithm with a generational model where children replace the parents, using the standard bit flip mutation.MutationOnlyGeneticAlgorithm
(int n, Initializer<BitVector> initializer, FitnessFunction.Integer<BitVector> f, double mutationRate, SelectionOperator selection, ProgressTracker<BitVector> tracker) Initializes a mutation-only genetic algorithm with a generational model where children replace the parents, using the standard bit flip mutation.OnePlusOneEvolutionaryAlgorithm
(IntegerCostOptimizationProblem<T> problem, UndoableMutationOperator<T> mutation, Initializer<T> initializer, ProgressTracker<T> tracker) Creates a OnePlusOneEvolutionaryAlgorithm instance for integer-valued optimization problems.OnePlusOneEvolutionaryAlgorithm
(OptimizationProblem<T> problem, UndoableMutationOperator<T> mutation, Initializer<T> initializer, ProgressTracker<T> tracker) Creates a OnePlusOneEvolutionaryAlgorithm instance for real-valued optimization problems.OnePlusOneGeneticAlgorithm
(IntegerCostOptimizationProblem<BitVector> problem, double m, int bitLength, ProgressTracker<BitVector> tracker) Creates a OnePlusOneGeneticAlgorithm instance for integer-valued optimization problems.OnePlusOneGeneticAlgorithm
(OptimizationProblem<BitVector> problem, double m, int bitLength, ProgressTracker<BitVector> tracker) Creates a OnePlusOneGeneticAlgorithm instance for real-valued optimization problems.SimpleGeneticAlgorithm
(int n, int bitLength, FitnessFunction.Double<BitVector> f, double mutationRate, double crossoverRate, ProgressTracker<BitVector> tracker) Initializes a simple genetic algorithm with a generational model where children replace the parents, using the standard bit flip mutation, single-point crossover (theSinglePointCrossover
class), and fitness-proportional selection (theFitnessProportionalSelection
class).SimpleGeneticAlgorithm
(int n, int bitLength, FitnessFunction.Integer<BitVector> f, double mutationRate, double crossoverRate, ProgressTracker<BitVector> tracker) Initializes a simple genetic algorithm with a generational model where children replace the parents, using the standard bit flip mutation, single-point crossover (theSinglePointCrossover
class), and fitness-proportional selection (theFitnessProportionalSelection
class). -
Uses of ProgressTracker in org.cicirello.search.hc
ModifierConstructorDescriptionFirstDescentHillClimber
(IntegerCostOptimizationProblem<T> problem, IterableMutationOperator<T> mutation, Initializer<T> initializer, ProgressTracker<T> tracker) Constructs a first descent hill climber object for integer-valued optimization problem.FirstDescentHillClimber
(OptimizationProblem<T> problem, IterableMutationOperator<T> mutation, Initializer<T> initializer, ProgressTracker<T> tracker) Constructs a first descent hill climber object for real-valued optimization problem.SteepestDescentHillClimber
(IntegerCostOptimizationProblem<T> problem, IterableMutationOperator<T> mutation, Initializer<T> initializer, ProgressTracker<T> tracker) Constructs a steepest descent hill climber object for integer-valued optimization problem.SteepestDescentHillClimber
(OptimizationProblem<T> problem, IterableMutationOperator<T> mutation, Initializer<T> initializer, ProgressTracker<T> tracker) Constructs a steepest descent hill climber object for real-valued optimization problem. -
Uses of ProgressTracker in org.cicirello.search.restarts
Modifier and TypeMethodDescriptionfinal void
Multistarter.setProgressTracker
(ProgressTracker<T> tracker) -
Uses of ProgressTracker in org.cicirello.search.sa
Modifier and TypeMethodDescriptionfinal ProgressTracker<T>
SimulatedAnnealing.getProgressTracker()
Modifier and TypeMethodDescriptionfinal void
SimulatedAnnealing.setProgressTracker
(ProgressTracker<T> tracker) ModifierConstructorDescriptionSimulatedAnnealing
(IntegerCostOptimizationProblem<T> problem, UndoableMutationOperator<T> mutation, Initializer<T> initializer, ProgressTracker<T> tracker) Creates a SimulatedAnnealing search instance for integer-valued optimization problems, with a default annealing schedule ofSelfTuningLam
, which is the Self-Tuning Lam annealing schedule of Cicirello (2021).SimulatedAnnealing
(IntegerCostOptimizationProblem<T> problem, UndoableMutationOperator<T> mutation, Initializer<T> initializer, ProgressTracker<T> tracker, SimpleLocalMetaheuristic<T> hc) Creates a SimulatedAnnealing search instance for integer-valued optimization problems, with a default annealing schedule ofSelfTuningLam
, which is the Self-Tuning Lam annealing schedule of Cicirello (2021), and which runs a hill climber as a post-processing step.SimulatedAnnealing
(IntegerCostOptimizationProblem<T> problem, UndoableMutationOperator<T> mutation, Initializer<T> initializer, AnnealingSchedule anneal, ProgressTracker<T> tracker) Creates a SimulatedAnnealing search instance for integer-valued optimization problems.SimulatedAnnealing
(IntegerCostOptimizationProblem<T> problem, UndoableMutationOperator<T> mutation, Initializer<T> initializer, AnnealingSchedule anneal, ProgressTracker<T> tracker, SimpleLocalMetaheuristic<T> hc) Creates a SimulatedAnnealing search instance for integer-valued optimization problems that runs a hill climber as a post-processing step.SimulatedAnnealing
(OptimizationProblem<T> problem, UndoableMutationOperator<T> mutation, Initializer<T> initializer, ProgressTracker<T> tracker) Creates a SimulatedAnnealing search instance for real-valued optimization problems, with a default annealing schedule ofSelfTuningLam
, which is the Self-Tuning Lam annealing schedule of Cicirello (2021).SimulatedAnnealing
(OptimizationProblem<T> problem, UndoableMutationOperator<T> mutation, Initializer<T> initializer, ProgressTracker<T> tracker, SimpleLocalMetaheuristic<T> hc) Creates a SimulatedAnnealing search instance for real-valued optimization problems, with a default annealing schedule ofSelfTuningLam
, which is the Self-Tuning Lam annealing schedule of Cicirello (2021), and which runs a hill climber as a post-processing step.SimulatedAnnealing
(OptimizationProblem<T> problem, UndoableMutationOperator<T> mutation, Initializer<T> initializer, AnnealingSchedule anneal, ProgressTracker<T> tracker) Creates a SimulatedAnnealing search instance for real-valued optimization problems.SimulatedAnnealing
(OptimizationProblem<T> problem, UndoableMutationOperator<T> mutation, Initializer<T> initializer, AnnealingSchedule anneal, ProgressTracker<T> tracker, SimpleLocalMetaheuristic<T> hc) Creates a SimulatedAnnealing search instance for real-valued optimization problems that runs a hill climber as a post-processing step. -
Uses of ProgressTracker in org.cicirello.search.ss
Modifier and TypeMethodDescriptionfinal ProgressTracker<T>
HeuristicSolutionGenerator.getProgressTracker()
Modifier and TypeMethodDescriptionHeuristicPermutationGenerator.createHeuristicPermutationGenerator
(ConstructiveHeuristic<Permutation> heuristic, ProgressTracker<Permutation> tracker) Creates a HeuristicPermutationGenerator for generating solutions to an optimization problem using a constructive heuristic.static <T extends Copyable<T>>
HeuristicSolutionGenerator<T>HeuristicSolutionGenerator.createHeuristicSolutionGenerator
(ConstructiveHeuristic<T> heuristic, ProgressTracker<T> tracker) Creates a HeuristicSolutionGenerator for generating solutions to an optimization problem using a constructive heuristic.final void
HeuristicSolutionGenerator.setProgressTracker
(ProgressTracker<T> tracker) ModifierConstructorDescriptionAcceptanceBandSampling
(ConstructiveHeuristic<T> heuristic, double beta, ProgressTracker<T> tracker) Constructs an AcceptanceBandSampling search object.AcceptanceBandSampling
(ConstructiveHeuristic<T> heuristic, ProgressTracker<T> tracker) Constructs an AcceptanceBandSampling search object.HeuristicBiasedStochasticSampling
(ConstructiveHeuristic<T> heuristic, boolean exponentialBias, ProgressTracker<T> tracker) Constructs a HeuristicBiasedStochasticSampling search object.HeuristicBiasedStochasticSampling
(ConstructiveHeuristic<T> heuristic, double exponent, ProgressTracker<T> tracker) Constructs a HeuristicBiasedStochasticSampling search object.HeuristicBiasedStochasticSampling
(ConstructiveHeuristic<T> heuristic, ProgressTracker<T> tracker) Constructs a HeuristicBiasedStochasticSampling search object.HeuristicBiasedStochasticSampling
(ConstructiveHeuristic<T> heuristic, HeuristicBiasedStochasticSampling.BiasFunction bias, ProgressTracker<T> tracker) Constructs a HeuristicBiasedStochasticSampling search object.IterativeSampling
(IntegerCostOptimizationProblem<T> problem, Initializer<T> initializer, ProgressTracker<T> tracker) Constructs an iterative sampling search for a integer-valued optimization problem.IterativeSampling
(OptimizationProblem<T> problem, Initializer<T> initializer, ProgressTracker<T> tracker) Constructs an iterative sampling search for a real-valued optimization problem.ValueBiasedStochasticSampling
(ConstructiveHeuristic<T> heuristic, double exponent, ProgressTracker<T> tracker) Constructs a ValueBiasedStochasticSampling search object.ValueBiasedStochasticSampling
(ConstructiveHeuristic<T> heuristic, ProgressTracker<T> tracker) Constructs a ValueBiasedStochasticSampling search object.ValueBiasedStochasticSampling
(ConstructiveHeuristic<T> heuristic, ValueBiasedStochasticSampling.BiasFunction bias, ProgressTracker<T> tracker) Constructs a ValueBiasedStochasticSampling search object.