Uses of Interface
org.cicirello.search.evo.FitnessFunction.Integer
Package
Description
This package includes classes and interfaces directly related to implementing evolutionary
algorithms.
-
Uses of FitnessFunction.Integer in org.cicirello.search.evo
Modifier and TypeClassDescriptionfinal class
NegativeIntegerCostFitnessFunction<T extends Copyable<T>>
This class provides a convenient mechanism for transforming optimization cost values to fitness values.ModifierConstructorDescriptionAdaptiveEvolutionaryAlgorithm
(int n, MutationOperator<T> mutation, CrossoverOperator<T> crossover, Initializer<T> initializer, FitnessFunction.Integer<T> f, SelectionOperator selection) Constructs and initializes the evolutionary algorithm.AdaptiveEvolutionaryAlgorithm
(int n, MutationOperator<T> mutation, CrossoverOperator<T> crossover, Initializer<T> initializer, FitnessFunction.Integer<T> f, SelectionOperator selection, int eliteCount) Constructs and initializes the evolutionary algorithm.AdaptiveEvolutionaryAlgorithm
(int n, MutationOperator<T> mutation, CrossoverOperator<T> crossover, Initializer<T> initializer, FitnessFunction.Integer<T> f, SelectionOperator selection, int eliteCount, ProgressTracker<T> tracker) Constructs and initializes the evolutionary algorithm.AdaptiveEvolutionaryAlgorithm
(int n, MutationOperator<T> mutation, CrossoverOperator<T> crossover, Initializer<T> initializer, FitnessFunction.Integer<T> f, SelectionOperator selection, ProgressTracker<T> tracker) Constructs and initializes the evolutionary algorithm.AdaptiveMutationOnlyEvolutionaryAlgorithm
(int n, MutationOperator<T> mutation, Initializer<T> initializer, FitnessFunction.Integer<T> f, SelectionOperator selection) Constructs and initializes the evolutionary algorithm.AdaptiveMutationOnlyEvolutionaryAlgorithm
(int n, MutationOperator<T> mutation, Initializer<T> initializer, FitnessFunction.Integer<T> f, SelectionOperator selection, int eliteCount) Constructs and initializes the evolutionary algorithm.AdaptiveMutationOnlyEvolutionaryAlgorithm
(int n, MutationOperator<T> mutation, Initializer<T> initializer, FitnessFunction.Integer<T> f, SelectionOperator selection, int eliteCount, ProgressTracker<T> tracker) Constructs and initializes the evolutionary algorithm.AdaptiveMutationOnlyEvolutionaryAlgorithm
(int n, MutationOperator<T> mutation, Initializer<T> initializer, FitnessFunction.Integer<T> f, SelectionOperator selection, ProgressTracker<T> tracker) Constructs and initializes the evolutionary algorithm.GenerationalEvolutionaryAlgorithm
(int n, MutationOperator<T> mutation, double mutationRate, CrossoverOperator<T> crossover, double crossoverRate, Initializer<T> initializer, FitnessFunction.Integer<T> f, SelectionOperator selection) Constructs and initializes the evolutionary algorithm.GenerationalEvolutionaryAlgorithm
(int n, MutationOperator<T> mutation, double mutationRate, CrossoverOperator<T> crossover, double crossoverRate, Initializer<T> initializer, FitnessFunction.Integer<T> f, SelectionOperator selection, int eliteCount) Constructs and initializes the evolutionary algorithm.GenerationalEvolutionaryAlgorithm
(int n, MutationOperator<T> mutation, double mutationRate, CrossoverOperator<T> crossover, double crossoverRate, Initializer<T> initializer, FitnessFunction.Integer<T> f, SelectionOperator selection, int eliteCount, ProgressTracker<T> tracker) Constructs and initializes the evolutionary algorithm.GenerationalEvolutionaryAlgorithm
(int n, MutationOperator<T> mutation, double mutationRate, CrossoverOperator<T> crossover, double crossoverRate, Initializer<T> initializer, FitnessFunction.Integer<T> f, SelectionOperator selection, ProgressTracker<T> tracker) Constructs and initializes the evolutionary algorithm.GenerationalEvolutionaryAlgorithmMutuallyExclusiveOperators
(int n, MutationOperator<T> mutation, double mutationRate, CrossoverOperator<T> crossover, double crossoverRate, Initializer<T> initializer, FitnessFunction.Integer<T> f, SelectionOperator selection) Constructs and initializes the evolutionary algorithm for an EA utilizing both a crossover operator and a mutation operator, such that the genetic operators follow a mutually exclusive property where each population member is involved in at most one of those operations in a single generation.GenerationalEvolutionaryAlgorithmMutuallyExclusiveOperators
(int n, MutationOperator<T> mutation, double mutationRate, CrossoverOperator<T> crossover, double crossoverRate, Initializer<T> initializer, FitnessFunction.Integer<T> f, SelectionOperator selection, int eliteCount) Constructs and initializes the evolutionary algorithm for an EA utilizing both a crossover operator and a mutation operator, such that the genetic operators follow a mutually exclusive property where each population member is involved in at most one of those operations in a single generation.GenerationalEvolutionaryAlgorithmMutuallyExclusiveOperators
(int n, MutationOperator<T> mutation, double mutationRate, CrossoverOperator<T> crossover, double crossoverRate, Initializer<T> initializer, FitnessFunction.Integer<T> f, SelectionOperator selection, int eliteCount, ProgressTracker<T> tracker) Constructs and initializes the evolutionary algorithm for an EA utilizing both a crossover operator and a mutation operator, such that the genetic operators follow a mutually exclusive property where each population member is involved in at most one of those operations in a single generation.GenerationalEvolutionaryAlgorithmMutuallyExclusiveOperators
(int n, MutationOperator<T> mutation, double mutationRate, CrossoverOperator<T> crossover, double crossoverRate, Initializer<T> initializer, FitnessFunction.Integer<T> f, SelectionOperator selection, ProgressTracker<T> tracker) Constructs and initializes the evolutionary algorithm for an EA utilizing both a crossover operator and a mutation operator, such that the genetic operators follow a mutually exclusive property where each population member is involved in at most one of those operations in a single generation.GenerationalMutationOnlyEvolutionaryAlgorithm
(int n, MutationOperator<T> mutation, double mutationRate, Initializer<T> initializer, FitnessFunction.Integer<T> f, SelectionOperator selection) Constructs and initializes the evolutionary algorithm with mutation only.GenerationalMutationOnlyEvolutionaryAlgorithm
(int n, MutationOperator<T> mutation, double mutationRate, Initializer<T> initializer, FitnessFunction.Integer<T> f, SelectionOperator selection, int eliteCount) Constructs and initializes the evolutionary algorithm with mutation only.GenerationalMutationOnlyEvolutionaryAlgorithm
(int n, MutationOperator<T> mutation, double mutationRate, Initializer<T> initializer, FitnessFunction.Integer<T> f, SelectionOperator selection, int eliteCount, ProgressTracker<T> tracker) Constructs and initializes the evolutionary algorithm with mutation only.GenerationalMutationOnlyEvolutionaryAlgorithm
(int n, MutationOperator<T> mutation, double mutationRate, Initializer<T> initializer, FitnessFunction.Integer<T> f, SelectionOperator selection, ProgressTracker<T> tracker) Constructs and initializes the evolutionary algorithm with mutation only.GeneticAlgorithm
(int n, int bitLength, FitnessFunction.Integer<BitVector> f, double mutationRate, CrossoverOperator<BitVector> crossover, double crossoverRate, SelectionOperator selection) Initializes a genetic algorithm with a generational model where children replace the parents, using the standard bit flip mutation.GeneticAlgorithm
(int n, int bitLength, FitnessFunction.Integer<BitVector> f, double mutationRate, CrossoverOperator<BitVector> crossover, double crossoverRate, SelectionOperator selection, int eliteCount) Initializes a genetic algorithm with a generational model where children replace the parents, using the standard bit flip mutation.GeneticAlgorithm
(int n, int bitLength, FitnessFunction.Integer<BitVector> f, double mutationRate, CrossoverOperator<BitVector> crossover, double crossoverRate, SelectionOperator selection, int eliteCount, ProgressTracker<BitVector> tracker) Initializes a genetic algorithm with a generational model where children replace the parents, using the standard bit flip mutation.GeneticAlgorithm
(int n, int bitLength, FitnessFunction.Integer<BitVector> f, double mutationRate, CrossoverOperator<BitVector> crossover, double crossoverRate, SelectionOperator selection, ProgressTracker<BitVector> tracker) Initializes a genetic algorithm with a generational model where children replace the parents, using the standard bit flip mutation.GeneticAlgorithm
(int n, Initializer<BitVector> initializer, FitnessFunction.Integer<BitVector> f, double mutationRate, CrossoverOperator<BitVector> crossover, double crossoverRate, SelectionOperator selection) Initializes a genetic algorithm with a generational model where children replace the parents, using the standard bit flip mutation.GeneticAlgorithm
(int n, Initializer<BitVector> initializer, FitnessFunction.Integer<BitVector> f, double mutationRate, CrossoverOperator<BitVector> crossover, double crossoverRate, SelectionOperator selection, int eliteCount) Initializes a genetic algorithm with a generational model where children replace the parents, using the standard bit flip mutation.GeneticAlgorithm
(int n, Initializer<BitVector> initializer, FitnessFunction.Integer<BitVector> f, double mutationRate, CrossoverOperator<BitVector> crossover, double crossoverRate, SelectionOperator selection, int eliteCount, ProgressTracker<BitVector> tracker) Initializes a genetic algorithm with a generational model where children replace the parents, using the standard bit flip mutation.GeneticAlgorithm
(int n, Initializer<BitVector> initializer, FitnessFunction.Integer<BitVector> f, double mutationRate, CrossoverOperator<BitVector> crossover, double crossoverRate, SelectionOperator selection, ProgressTracker<BitVector> tracker) Initializes a genetic algorithm with a generational model where children replace the parents, using the standard bit flip mutation.MutationOnlyGeneticAlgorithm
(int n, int bitLength, FitnessFunction.Integer<BitVector> f, double mutationRate, SelectionOperator selection) Initializes a mutation-only genetic algorithm with a generational model where children replace the parents, using the standard bit flip mutation.MutationOnlyGeneticAlgorithm
(int n, int bitLength, FitnessFunction.Integer<BitVector> f, double mutationRate, SelectionOperator selection, int eliteCount) Initializes a mutation-only genetic algorithm with a generational model where children replace the parents, using the standard bit flip mutation.MutationOnlyGeneticAlgorithm
(int n, int bitLength, FitnessFunction.Integer<BitVector> f, double mutationRate, SelectionOperator selection, int eliteCount, ProgressTracker<BitVector> tracker) Initializes a mutation-only genetic algorithm with a generational model where children replace the parents, using the standard bit flip mutation.MutationOnlyGeneticAlgorithm
(int n, int bitLength, FitnessFunction.Integer<BitVector> f, double mutationRate, SelectionOperator selection, ProgressTracker<BitVector> tracker) Initializes a mutation-only genetic algorithm with a generational model where children replace the parents, using the standard bit flip mutation.MutationOnlyGeneticAlgorithm
(int n, Initializer<BitVector> initializer, FitnessFunction.Integer<BitVector> f, double mutationRate, SelectionOperator selection) Initializes a mutation-only genetic algorithm with a generational model where children replace the parents, using the standard bit flip mutation.MutationOnlyGeneticAlgorithm
(int n, Initializer<BitVector> initializer, FitnessFunction.Integer<BitVector> f, double mutationRate, SelectionOperator selection, int eliteCount) Initializes a mutation-only genetic algorithm with a generational model where children replace the parents, using the standard bit flip mutation.MutationOnlyGeneticAlgorithm
(int n, Initializer<BitVector> initializer, FitnessFunction.Integer<BitVector> f, double mutationRate, SelectionOperator selection, int eliteCount, ProgressTracker<BitVector> tracker) Initializes a mutation-only genetic algorithm with a generational model where children replace the parents, using the standard bit flip mutation.MutationOnlyGeneticAlgorithm
(int n, Initializer<BitVector> initializer, FitnessFunction.Integer<BitVector> f, double mutationRate, SelectionOperator selection, ProgressTracker<BitVector> tracker) Initializes a mutation-only genetic algorithm with a generational model where children replace the parents, using the standard bit flip mutation.SimpleGeneticAlgorithm
(int n, int bitLength, FitnessFunction.Integer<BitVector> f, double mutationRate, double crossoverRate) Initializes a simple genetic algorithm with a generational model where children replace the parents, using the standard bit flip mutation, single-point crossover (theSinglePointCrossover
class), and fitness-proportional selection (theFitnessProportionalSelection
class).SimpleGeneticAlgorithm
(int n, int bitLength, FitnessFunction.Integer<BitVector> f, double mutationRate, double crossoverRate, ProgressTracker<BitVector> tracker) Initializes a simple genetic algorithm with a generational model where children replace the parents, using the standard bit flip mutation, single-point crossover (theSinglePointCrossover
class), and fitness-proportional selection (theFitnessProportionalSelection
class).