Uses of Interface
org.cicirello.search.operators.Initializer
Package
Description
This package includes classes and interfaces directly related to implementing evolutionary
algorithms.
This package includes classes and interfaces directly related to implementing hill climbers.
This package includes classes and interfaces for defining various operators required by simulated
annealing and other metaheuristics, such as mutation operators, along with other related classes
and interfaces.
This package includes classes that implement operators that create, mutate, etc, BitVectors.
This package includes classes that implement operators that create, mutate, etc, integer valued
representations.
This package includes classes that implement local search and evolutionary operators for
permutations, such as mutation operators, crossover operators, and initializers.
This package includes classes that implement operators that create, mutate, etc, the the inputs
to functions with real-valued input parameters (represented with type double), such as is
required to solve function optimization problems using simulated annealing or other
metaheuristics.
Package of classes and interfaces related to representing computational problems, as well as
classes implementing a variety of specific computational problems.
This package includes classes and interfaces directly related to implementing simulated
annealing.
This package includes classes and interfaces directly related to implementing stochastic sampling
algorithms.
-
Uses of Initializer in org.cicirello.search.evo
ModifierConstructorDescriptionAdaptiveEvolutionaryAlgorithm
(int n, MutationOperator<T> mutation, CrossoverOperator<T> crossover, Initializer<T> initializer, FitnessFunction.Double<T> f, SelectionOperator selection) Constructs and initializes the evolutionary algorithm.AdaptiveEvolutionaryAlgorithm
(int n, MutationOperator<T> mutation, CrossoverOperator<T> crossover, Initializer<T> initializer, FitnessFunction.Double<T> f, SelectionOperator selection, int eliteCount) Constructs and initializes the evolutionary algorithm.AdaptiveEvolutionaryAlgorithm
(int n, MutationOperator<T> mutation, CrossoverOperator<T> crossover, Initializer<T> initializer, FitnessFunction.Double<T> f, SelectionOperator selection, int eliteCount, ProgressTracker<T> tracker) Constructs and initializes the evolutionary algorithm.AdaptiveEvolutionaryAlgorithm
(int n, MutationOperator<T> mutation, CrossoverOperator<T> crossover, Initializer<T> initializer, FitnessFunction.Double<T> f, SelectionOperator selection, ProgressTracker<T> tracker) Constructs and initializes the evolutionary algorithm.AdaptiveEvolutionaryAlgorithm
(int n, MutationOperator<T> mutation, CrossoverOperator<T> crossover, Initializer<T> initializer, FitnessFunction.Integer<T> f, SelectionOperator selection) Constructs and initializes the evolutionary algorithm.AdaptiveEvolutionaryAlgorithm
(int n, MutationOperator<T> mutation, CrossoverOperator<T> crossover, Initializer<T> initializer, FitnessFunction.Integer<T> f, SelectionOperator selection, int eliteCount) Constructs and initializes the evolutionary algorithm.AdaptiveEvolutionaryAlgorithm
(int n, MutationOperator<T> mutation, CrossoverOperator<T> crossover, Initializer<T> initializer, FitnessFunction.Integer<T> f, SelectionOperator selection, int eliteCount, ProgressTracker<T> tracker) Constructs and initializes the evolutionary algorithm.AdaptiveEvolutionaryAlgorithm
(int n, MutationOperator<T> mutation, CrossoverOperator<T> crossover, Initializer<T> initializer, FitnessFunction.Integer<T> f, SelectionOperator selection, ProgressTracker<T> tracker) Constructs and initializes the evolutionary algorithm.AdaptiveMutationOnlyEvolutionaryAlgorithm
(int n, MutationOperator<T> mutation, Initializer<T> initializer, FitnessFunction.Double<T> f, SelectionOperator selection) Constructs and initializes the evolutionary algorithm.AdaptiveMutationOnlyEvolutionaryAlgorithm
(int n, MutationOperator<T> mutation, Initializer<T> initializer, FitnessFunction.Double<T> f, SelectionOperator selection, int eliteCount) Constructs and initializes the evolutionary algorithm.AdaptiveMutationOnlyEvolutionaryAlgorithm
(int n, MutationOperator<T> mutation, Initializer<T> initializer, FitnessFunction.Double<T> f, SelectionOperator selection, int eliteCount, ProgressTracker<T> tracker) Constructs and initializes the evolutionary algorithm.AdaptiveMutationOnlyEvolutionaryAlgorithm
(int n, MutationOperator<T> mutation, Initializer<T> initializer, FitnessFunction.Double<T> f, SelectionOperator selection, ProgressTracker<T> tracker) Constructs and initializes the evolutionary algorithm.AdaptiveMutationOnlyEvolutionaryAlgorithm
(int n, MutationOperator<T> mutation, Initializer<T> initializer, FitnessFunction.Integer<T> f, SelectionOperator selection) Constructs and initializes the evolutionary algorithm.AdaptiveMutationOnlyEvolutionaryAlgorithm
(int n, MutationOperator<T> mutation, Initializer<T> initializer, FitnessFunction.Integer<T> f, SelectionOperator selection, int eliteCount) Constructs and initializes the evolutionary algorithm.AdaptiveMutationOnlyEvolutionaryAlgorithm
(int n, MutationOperator<T> mutation, Initializer<T> initializer, FitnessFunction.Integer<T> f, SelectionOperator selection, int eliteCount, ProgressTracker<T> tracker) Constructs and initializes the evolutionary algorithm.AdaptiveMutationOnlyEvolutionaryAlgorithm
(int n, MutationOperator<T> mutation, Initializer<T> initializer, FitnessFunction.Integer<T> f, SelectionOperator selection, ProgressTracker<T> tracker) Constructs and initializes the evolutionary algorithm.GenerationalEvolutionaryAlgorithm
(int n, MutationOperator<T> mutation, double mutationRate, CrossoverOperator<T> crossover, double crossoverRate, Initializer<T> initializer, FitnessFunction.Double<T> f, SelectionOperator selection) Constructs and initializes the evolutionary algorithm.GenerationalEvolutionaryAlgorithm
(int n, MutationOperator<T> mutation, double mutationRate, CrossoverOperator<T> crossover, double crossoverRate, Initializer<T> initializer, FitnessFunction.Double<T> f, SelectionOperator selection, int eliteCount) Constructs and initializes the evolutionary algorithm.GenerationalEvolutionaryAlgorithm
(int n, MutationOperator<T> mutation, double mutationRate, CrossoverOperator<T> crossover, double crossoverRate, Initializer<T> initializer, FitnessFunction.Double<T> f, SelectionOperator selection, int eliteCount, ProgressTracker<T> tracker) Constructs and initializes the evolutionary algorithm.GenerationalEvolutionaryAlgorithm
(int n, MutationOperator<T> mutation, double mutationRate, CrossoverOperator<T> crossover, double crossoverRate, Initializer<T> initializer, FitnessFunction.Double<T> f, SelectionOperator selection, ProgressTracker<T> tracker) Constructs and initializes the evolutionary algorithm.GenerationalEvolutionaryAlgorithm
(int n, MutationOperator<T> mutation, double mutationRate, CrossoverOperator<T> crossover, double crossoverRate, Initializer<T> initializer, FitnessFunction.Integer<T> f, SelectionOperator selection) Constructs and initializes the evolutionary algorithm.GenerationalEvolutionaryAlgorithm
(int n, MutationOperator<T> mutation, double mutationRate, CrossoverOperator<T> crossover, double crossoverRate, Initializer<T> initializer, FitnessFunction.Integer<T> f, SelectionOperator selection, int eliteCount) Constructs and initializes the evolutionary algorithm.GenerationalEvolutionaryAlgorithm
(int n, MutationOperator<T> mutation, double mutationRate, CrossoverOperator<T> crossover, double crossoverRate, Initializer<T> initializer, FitnessFunction.Integer<T> f, SelectionOperator selection, int eliteCount, ProgressTracker<T> tracker) Constructs and initializes the evolutionary algorithm.GenerationalEvolutionaryAlgorithm
(int n, MutationOperator<T> mutation, double mutationRate, CrossoverOperator<T> crossover, double crossoverRate, Initializer<T> initializer, FitnessFunction.Integer<T> f, SelectionOperator selection, ProgressTracker<T> tracker) Constructs and initializes the evolutionary algorithm.GenerationalEvolutionaryAlgorithmMutuallyExclusiveOperators
(int n, MutationOperator<T> mutation, double mutationRate, CrossoverOperator<T> crossover, double crossoverRate, Initializer<T> initializer, FitnessFunction.Double<T> f, SelectionOperator selection) Constructs and initializes the evolutionary algorithm for an EA utilizing both a crossover operator and a mutation operator, such that the genetic operators follow a mutually exclusive property where each population member is involved in at most one of those operations in a single generation.GenerationalEvolutionaryAlgorithmMutuallyExclusiveOperators
(int n, MutationOperator<T> mutation, double mutationRate, CrossoverOperator<T> crossover, double crossoverRate, Initializer<T> initializer, FitnessFunction.Double<T> f, SelectionOperator selection, int eliteCount) Constructs and initializes the evolutionary algorithm for an EA utilizing both a crossover operator and a mutation operator, such that the genetic operators follow a mutually exclusive property where each population member is involved in at most one of those operations in a single generation.GenerationalEvolutionaryAlgorithmMutuallyExclusiveOperators
(int n, MutationOperator<T> mutation, double mutationRate, CrossoverOperator<T> crossover, double crossoverRate, Initializer<T> initializer, FitnessFunction.Double<T> f, SelectionOperator selection, int eliteCount, ProgressTracker<T> tracker) Constructs and initializes the evolutionary algorithm for an EA utilizing both a crossover operator and a mutation operator, such that the genetic operators follow a mutually exclusive property where each population member is involved in at most one of those operations in a single generation.GenerationalEvolutionaryAlgorithmMutuallyExclusiveOperators
(int n, MutationOperator<T> mutation, double mutationRate, CrossoverOperator<T> crossover, double crossoverRate, Initializer<T> initializer, FitnessFunction.Double<T> f, SelectionOperator selection, ProgressTracker<T> tracker) Constructs and initializes the evolutionary algorithm for an EA utilizing both a crossover operator and a mutation operator, such that the genetic operators follow a mutually exclusive property where each population member is involved in at most one of those operations in a single generation.GenerationalEvolutionaryAlgorithmMutuallyExclusiveOperators
(int n, MutationOperator<T> mutation, double mutationRate, CrossoverOperator<T> crossover, double crossoverRate, Initializer<T> initializer, FitnessFunction.Integer<T> f, SelectionOperator selection) Constructs and initializes the evolutionary algorithm for an EA utilizing both a crossover operator and a mutation operator, such that the genetic operators follow a mutually exclusive property where each population member is involved in at most one of those operations in a single generation.GenerationalEvolutionaryAlgorithmMutuallyExclusiveOperators
(int n, MutationOperator<T> mutation, double mutationRate, CrossoverOperator<T> crossover, double crossoverRate, Initializer<T> initializer, FitnessFunction.Integer<T> f, SelectionOperator selection, int eliteCount) Constructs and initializes the evolutionary algorithm for an EA utilizing both a crossover operator and a mutation operator, such that the genetic operators follow a mutually exclusive property where each population member is involved in at most one of those operations in a single generation.GenerationalEvolutionaryAlgorithmMutuallyExclusiveOperators
(int n, MutationOperator<T> mutation, double mutationRate, CrossoverOperator<T> crossover, double crossoverRate, Initializer<T> initializer, FitnessFunction.Integer<T> f, SelectionOperator selection, int eliteCount, ProgressTracker<T> tracker) Constructs and initializes the evolutionary algorithm for an EA utilizing both a crossover operator and a mutation operator, such that the genetic operators follow a mutually exclusive property where each population member is involved in at most one of those operations in a single generation.GenerationalEvolutionaryAlgorithmMutuallyExclusiveOperators
(int n, MutationOperator<T> mutation, double mutationRate, CrossoverOperator<T> crossover, double crossoverRate, Initializer<T> initializer, FitnessFunction.Integer<T> f, SelectionOperator selection, ProgressTracker<T> tracker) Constructs and initializes the evolutionary algorithm for an EA utilizing both a crossover operator and a mutation operator, such that the genetic operators follow a mutually exclusive property where each population member is involved in at most one of those operations in a single generation.GenerationalMutationOnlyEvolutionaryAlgorithm
(int n, MutationOperator<T> mutation, double mutationRate, Initializer<T> initializer, FitnessFunction.Double<T> f, SelectionOperator selection) Constructs and initializes the evolutionary algorithm with mutation only.GenerationalMutationOnlyEvolutionaryAlgorithm
(int n, MutationOperator<T> mutation, double mutationRate, Initializer<T> initializer, FitnessFunction.Double<T> f, SelectionOperator selection, int eliteCount) Constructs and initializes the evolutionary algorithm with mutation only.GenerationalMutationOnlyEvolutionaryAlgorithm
(int n, MutationOperator<T> mutation, double mutationRate, Initializer<T> initializer, FitnessFunction.Double<T> f, SelectionOperator selection, int eliteCount, ProgressTracker<T> tracker) Constructs and initializes the evolutionary algorithm with mutation only.GenerationalMutationOnlyEvolutionaryAlgorithm
(int n, MutationOperator<T> mutation, double mutationRate, Initializer<T> initializer, FitnessFunction.Double<T> f, SelectionOperator selection, ProgressTracker<T> tracker) Constructs and initializes the evolutionary algorithm with mutation only.GenerationalMutationOnlyEvolutionaryAlgorithm
(int n, MutationOperator<T> mutation, double mutationRate, Initializer<T> initializer, FitnessFunction.Integer<T> f, SelectionOperator selection) Constructs and initializes the evolutionary algorithm with mutation only.GenerationalMutationOnlyEvolutionaryAlgorithm
(int n, MutationOperator<T> mutation, double mutationRate, Initializer<T> initializer, FitnessFunction.Integer<T> f, SelectionOperator selection, int eliteCount) Constructs and initializes the evolutionary algorithm with mutation only.GenerationalMutationOnlyEvolutionaryAlgorithm
(int n, MutationOperator<T> mutation, double mutationRate, Initializer<T> initializer, FitnessFunction.Integer<T> f, SelectionOperator selection, int eliteCount, ProgressTracker<T> tracker) Constructs and initializes the evolutionary algorithm with mutation only.GenerationalMutationOnlyEvolutionaryAlgorithm
(int n, MutationOperator<T> mutation, double mutationRate, Initializer<T> initializer, FitnessFunction.Integer<T> f, SelectionOperator selection, ProgressTracker<T> tracker) Constructs and initializes the evolutionary algorithm with mutation only.GeneticAlgorithm
(int n, Initializer<BitVector> initializer, FitnessFunction.Double<BitVector> f, double mutationRate, CrossoverOperator<BitVector> crossover, double crossoverRate, SelectionOperator selection) Initializes a genetic algorithm with a generational model where children replace the parents, using the standard bit flip mutation.GeneticAlgorithm
(int n, Initializer<BitVector> initializer, FitnessFunction.Double<BitVector> f, double mutationRate, CrossoverOperator<BitVector> crossover, double crossoverRate, SelectionOperator selection, int eliteCount) Initializes a genetic algorithm with a generational model where children replace the parents, using the standard bit flip mutation.GeneticAlgorithm
(int n, Initializer<BitVector> initializer, FitnessFunction.Double<BitVector> f, double mutationRate, CrossoverOperator<BitVector> crossover, double crossoverRate, SelectionOperator selection, int eliteCount, ProgressTracker<BitVector> tracker) Initializes a genetic algorithm with a generational model where children replace the parents, using the standard bit flip mutation.GeneticAlgorithm
(int n, Initializer<BitVector> initializer, FitnessFunction.Double<BitVector> f, double mutationRate, CrossoverOperator<BitVector> crossover, double crossoverRate, SelectionOperator selection, ProgressTracker<BitVector> tracker) Initializes a genetic algorithm with a generational model where children replace the parents, using the standard bit flip mutation.GeneticAlgorithm
(int n, Initializer<BitVector> initializer, FitnessFunction.Integer<BitVector> f, double mutationRate, CrossoverOperator<BitVector> crossover, double crossoverRate, SelectionOperator selection) Initializes a genetic algorithm with a generational model where children replace the parents, using the standard bit flip mutation.GeneticAlgorithm
(int n, Initializer<BitVector> initializer, FitnessFunction.Integer<BitVector> f, double mutationRate, CrossoverOperator<BitVector> crossover, double crossoverRate, SelectionOperator selection, int eliteCount) Initializes a genetic algorithm with a generational model where children replace the parents, using the standard bit flip mutation.GeneticAlgorithm
(int n, Initializer<BitVector> initializer, FitnessFunction.Integer<BitVector> f, double mutationRate, CrossoverOperator<BitVector> crossover, double crossoverRate, SelectionOperator selection, int eliteCount, ProgressTracker<BitVector> tracker) Initializes a genetic algorithm with a generational model where children replace the parents, using the standard bit flip mutation.GeneticAlgorithm
(int n, Initializer<BitVector> initializer, FitnessFunction.Integer<BitVector> f, double mutationRate, CrossoverOperator<BitVector> crossover, double crossoverRate, SelectionOperator selection, ProgressTracker<BitVector> tracker) Initializes a genetic algorithm with a generational model where children replace the parents, using the standard bit flip mutation.MutationOnlyGeneticAlgorithm
(int n, Initializer<BitVector> initializer, FitnessFunction.Double<BitVector> f, double mutationRate, SelectionOperator selection) Initializes a mutation-only genetic algorithm with a generational model where children replace the parents, using the standard bit flip mutation.MutationOnlyGeneticAlgorithm
(int n, Initializer<BitVector> initializer, FitnessFunction.Double<BitVector> f, double mutationRate, SelectionOperator selection, int eliteCount) Initializes a mutation-only genetic algorithm with a generational model where children replace the parents, using the standard bit flip mutation.MutationOnlyGeneticAlgorithm
(int n, Initializer<BitVector> initializer, FitnessFunction.Double<BitVector> f, double mutationRate, SelectionOperator selection, int eliteCount, ProgressTracker<BitVector> tracker) Initializes a mutation-only genetic algorithm with a generational model where children replace the parents, using the standard bit flip mutation.MutationOnlyGeneticAlgorithm
(int n, Initializer<BitVector> initializer, FitnessFunction.Double<BitVector> f, double mutationRate, SelectionOperator selection, ProgressTracker<BitVector> tracker) Initializes a mutation-only genetic algorithm with a generational model where children replace the parents, using the standard bit flip mutation.MutationOnlyGeneticAlgorithm
(int n, Initializer<BitVector> initializer, FitnessFunction.Integer<BitVector> f, double mutationRate, SelectionOperator selection) Initializes a mutation-only genetic algorithm with a generational model where children replace the parents, using the standard bit flip mutation.MutationOnlyGeneticAlgorithm
(int n, Initializer<BitVector> initializer, FitnessFunction.Integer<BitVector> f, double mutationRate, SelectionOperator selection, int eliteCount) Initializes a mutation-only genetic algorithm with a generational model where children replace the parents, using the standard bit flip mutation.MutationOnlyGeneticAlgorithm
(int n, Initializer<BitVector> initializer, FitnessFunction.Integer<BitVector> f, double mutationRate, SelectionOperator selection, int eliteCount, ProgressTracker<BitVector> tracker) Initializes a mutation-only genetic algorithm with a generational model where children replace the parents, using the standard bit flip mutation.MutationOnlyGeneticAlgorithm
(int n, Initializer<BitVector> initializer, FitnessFunction.Integer<BitVector> f, double mutationRate, SelectionOperator selection, ProgressTracker<BitVector> tracker) Initializes a mutation-only genetic algorithm with a generational model where children replace the parents, using the standard bit flip mutation.NaiveGenerationalEvolutionaryAlgorithm
(int n, MutationOperator<T> mutation, double mutationRate, CrossoverOperator<T> crossover, double crossoverRate, Initializer<T> initializer, FitnessFunction.Double<T> f, SelectionOperator selection) Deprecated.Constructs and initializes the evolutionary algorithm.NaiveGenerationalEvolutionaryAlgorithm
(int n, MutationOperator<T> mutation, double mutationRate, CrossoverOperator<T> crossover, double crossoverRate, Initializer<T> initializer, FitnessFunction.Integer<T> f, SelectionOperator selection) Deprecated.Constructs and initializes the evolutionary algorithm.OnePlusOneEvolutionaryAlgorithm
(IntegerCostOptimizationProblem<T> problem, UndoableMutationOperator<T> mutation, Initializer<T> initializer) Creates a OnePlusOneEvolutionaryAlgorithm instance for integer-valued optimization problems.OnePlusOneEvolutionaryAlgorithm
(IntegerCostOptimizationProblem<T> problem, UndoableMutationOperator<T> mutation, Initializer<T> initializer, ProgressTracker<T> tracker) Creates a OnePlusOneEvolutionaryAlgorithm instance for integer-valued optimization problems.OnePlusOneEvolutionaryAlgorithm
(OptimizationProblem<T> problem, UndoableMutationOperator<T> mutation, Initializer<T> initializer) Creates a OnePlusOneEvolutionaryAlgorithm instance for real-valued optimization problems.OnePlusOneEvolutionaryAlgorithm
(OptimizationProblem<T> problem, UndoableMutationOperator<T> mutation, Initializer<T> initializer, ProgressTracker<T> tracker) Creates a OnePlusOneEvolutionaryAlgorithm instance for real-valued optimization problems. -
Uses of Initializer in org.cicirello.search.hc
ModifierConstructorDescriptionFirstDescentHillClimber
(IntegerCostOptimizationProblem<T> problem, IterableMutationOperator<T> mutation, Initializer<T> initializer) Constructs a first descent hill climber object for integer-valued optimization problem.FirstDescentHillClimber
(IntegerCostOptimizationProblem<T> problem, IterableMutationOperator<T> mutation, Initializer<T> initializer, ProgressTracker<T> tracker) Constructs a first descent hill climber object for integer-valued optimization problem.FirstDescentHillClimber
(OptimizationProblem<T> problem, IterableMutationOperator<T> mutation, Initializer<T> initializer) Constructs a first descent hill climber object for real-valued optimization problem.FirstDescentHillClimber
(OptimizationProblem<T> problem, IterableMutationOperator<T> mutation, Initializer<T> initializer, ProgressTracker<T> tracker) Constructs a first descent hill climber object for real-valued optimization problem.SteepestDescentHillClimber
(IntegerCostOptimizationProblem<T> problem, IterableMutationOperator<T> mutation, Initializer<T> initializer) Constructs a steepest descent hill climber object for integer-valued optimization problem.SteepestDescentHillClimber
(IntegerCostOptimizationProblem<T> problem, IterableMutationOperator<T> mutation, Initializer<T> initializer, ProgressTracker<T> tracker) Constructs a steepest descent hill climber object for integer-valued optimization problem.SteepestDescentHillClimber
(OptimizationProblem<T> problem, IterableMutationOperator<T> mutation, Initializer<T> initializer) Constructs a steepest descent hill climber object for real-valued optimization problem.SteepestDescentHillClimber
(OptimizationProblem<T> problem, IterableMutationOperator<T> mutation, Initializer<T> initializer, ProgressTracker<T> tracker) Constructs a steepest descent hill climber object for real-valued optimization problem. -
Uses of Initializer in org.cicirello.search.operators
Modifier and TypeClassDescriptionfinal class
InitializeBySimpleMetaheuristic<T extends Copyable<T>>
This class implements theInitializer
interface to provide metaheuristics and other search algorithms with a way to generate initial candidate solutions to a problem, that are themselves generated via a metaheuristic. -
Uses of Initializer in org.cicirello.search.operators.bits
Modifier and TypeClassDescriptionfinal class
Generates randomBitVector
objects for use in generating random initial solutions for simulated annealing and other metaheuristics. -
Uses of Initializer in org.cicirello.search.operators.integers
Modifier and TypeClassDescriptionfinal class
Generates randomSingleInteger
objects for use in generating random initial solutions for simulated annealing and other metaheuristics, and for copying such objects.class
Generating randomIntegerVector
objects for use in generating random initial solutions for simulated annealing and other metaheuristics, and for copying such objects. -
Uses of Initializer in org.cicirello.search.operators.permutations
Modifier and TypeClassDescriptionfinal class
The PermutationInitializer provides metaheuristic implementations, such as of simulated annealing, etc, with a way to generate random initial solutions to a problem, as well as a way to make copies of current solution configurations. -
Uses of Initializer in org.cicirello.search.operators.reals
Modifier and TypeClassDescriptionfinal class
Generating randomSingleReal
objects for use in generating random initial solutions for simulated annealing and other metaheuristics, and for copying such objects.final class
Generates randomRealVector
objects for use in generating random initial solutions for simulated annealing and other metaheuristics, and for copying such objects. -
Uses of Initializer in org.cicirello.search.problems
Modifier and TypeClassDescriptionfinal class
The BoundMax class is an implementation of a generalization of the well-known OneMax problem, often used in benchmarking genetic algorithms and other metaheuristics.final class
A continuous function with a single suboptimal local minimum, and a single global minimum, and a 0 derivative inflexion point, defined for inputs x in [0.0, 1.0].final class
A continuous function with a large number of local minimums, and a single global minimum, defined for input x in [0.5, 2.5].class
This class implements a mapping between Permutation problems and BitVector problems, enabling usingBitVector
search operators to solve problems defined over the space ofPermutation
objects.static final class
This class implements a mapping between Permutation problems and BitVector problems, where cost values are of type double.static final class
This class implements a mapping between Permutation problems and BitVector problems, where cost values are of type int. -
Uses of Initializer in org.cicirello.search.sa
ModifierConstructorDescriptionSimulatedAnnealing
(IntegerCostOptimizationProblem<T> problem, UndoableMutationOperator<T> mutation, Initializer<T> initializer) Creates a SimulatedAnnealing search instance for integer-valued optimization problems, with a default annealing schedule ofSelfTuningLam
, which is the Self-Tuning Lam annealing schedule of Cicirello (2021).SimulatedAnnealing
(IntegerCostOptimizationProblem<T> problem, UndoableMutationOperator<T> mutation, Initializer<T> initializer, ProgressTracker<T> tracker) Creates a SimulatedAnnealing search instance for integer-valued optimization problems, with a default annealing schedule ofSelfTuningLam
, which is the Self-Tuning Lam annealing schedule of Cicirello (2021).SimulatedAnnealing
(IntegerCostOptimizationProblem<T> problem, UndoableMutationOperator<T> mutation, Initializer<T> initializer, ProgressTracker<T> tracker, SimpleLocalMetaheuristic<T> hc) Creates a SimulatedAnnealing search instance for integer-valued optimization problems, with a default annealing schedule ofSelfTuningLam
, which is the Self-Tuning Lam annealing schedule of Cicirello (2021), and which runs a hill climber as a post-processing step.SimulatedAnnealing
(IntegerCostOptimizationProblem<T> problem, UndoableMutationOperator<T> mutation, Initializer<T> initializer, AnnealingSchedule anneal) Creates a SimulatedAnnealing search instance for integer-valued optimization problems.SimulatedAnnealing
(IntegerCostOptimizationProblem<T> problem, UndoableMutationOperator<T> mutation, Initializer<T> initializer, AnnealingSchedule anneal, ProgressTracker<T> tracker) Creates a SimulatedAnnealing search instance for integer-valued optimization problems.SimulatedAnnealing
(IntegerCostOptimizationProblem<T> problem, UndoableMutationOperator<T> mutation, Initializer<T> initializer, AnnealingSchedule anneal, ProgressTracker<T> tracker, SimpleLocalMetaheuristic<T> hc) Creates a SimulatedAnnealing search instance for integer-valued optimization problems that runs a hill climber as a post-processing step.SimulatedAnnealing
(IntegerCostOptimizationProblem<T> problem, UndoableMutationOperator<T> mutation, Initializer<T> initializer, AnnealingSchedule anneal, SimpleLocalMetaheuristic<T> hc) Creates a SimulatedAnnealing search instance for integer-valued optimization problems that runs a hill climber as a post-processing step.SimulatedAnnealing
(IntegerCostOptimizationProblem<T> problem, UndoableMutationOperator<T> mutation, Initializer<T> initializer, SimpleLocalMetaheuristic<T> hc) Creates a SimulatedAnnealing search instance for integer-valued optimization problems, with a default annealing schedule ofSelfTuningLam
, which is the Self-Tuning Lam annealing schedule of Cicirello (2021), and which runs a hill climber as a post-processing step.SimulatedAnnealing
(OptimizationProblem<T> problem, UndoableMutationOperator<T> mutation, Initializer<T> initializer) Creates a SimulatedAnnealing search instance for real-valued optimization problems, with a default annealing schedule ofSelfTuningLam
, which is the Self-Tuning Lam annealing schedule of Cicirello (2021).SimulatedAnnealing
(OptimizationProblem<T> problem, UndoableMutationOperator<T> mutation, Initializer<T> initializer, ProgressTracker<T> tracker) Creates a SimulatedAnnealing search instance for real-valued optimization problems, with a default annealing schedule ofSelfTuningLam
, which is the Self-Tuning Lam annealing schedule of Cicirello (2021).SimulatedAnnealing
(OptimizationProblem<T> problem, UndoableMutationOperator<T> mutation, Initializer<T> initializer, ProgressTracker<T> tracker, SimpleLocalMetaheuristic<T> hc) Creates a SimulatedAnnealing search instance for real-valued optimization problems, with a default annealing schedule ofSelfTuningLam
, which is the Self-Tuning Lam annealing schedule of Cicirello (2021), and which runs a hill climber as a post-processing step.SimulatedAnnealing
(OptimizationProblem<T> problem, UndoableMutationOperator<T> mutation, Initializer<T> initializer, AnnealingSchedule anneal) Creates a SimulatedAnnealing search instance for real-valued optimization problems.SimulatedAnnealing
(OptimizationProblem<T> problem, UndoableMutationOperator<T> mutation, Initializer<T> initializer, AnnealingSchedule anneal, ProgressTracker<T> tracker) Creates a SimulatedAnnealing search instance for real-valued optimization problems.SimulatedAnnealing
(OptimizationProblem<T> problem, UndoableMutationOperator<T> mutation, Initializer<T> initializer, AnnealingSchedule anneal, ProgressTracker<T> tracker, SimpleLocalMetaheuristic<T> hc) Creates a SimulatedAnnealing search instance for real-valued optimization problems that runs a hill climber as a post-processing step.SimulatedAnnealing
(OptimizationProblem<T> problem, UndoableMutationOperator<T> mutation, Initializer<T> initializer, AnnealingSchedule anneal, SimpleLocalMetaheuristic<T> hc) Creates a SimulatedAnnealing search instance for real-valued optimization problems that runs a hill climber as a post-processing step.SimulatedAnnealing
(OptimizationProblem<T> problem, UndoableMutationOperator<T> mutation, Initializer<T> initializer, SimpleLocalMetaheuristic<T> hc) Creates a SimulatedAnnealing search instance for real-valued optimization problems, with a default annealing schedule ofSelfTuningLam
, which is the Self-Tuning Lam annealing schedule of Cicirello (2021), and which runs a hill climber as a post-processing step. -
Uses of Initializer in org.cicirello.search.ss
ModifierConstructorDescriptionIterativeSampling
(IntegerCostOptimizationProblem<T> problem, Initializer<T> initializer) Constructs an iterative sampling search for a integer-valued optimization problem.IterativeSampling
(IntegerCostOptimizationProblem<T> problem, Initializer<T> initializer, ProgressTracker<T> tracker) Constructs an iterative sampling search for a integer-valued optimization problem.IterativeSampling
(OptimizationProblem<T> problem, Initializer<T> initializer) Constructs an iterative sampling search for a real-valued optimization problem.IterativeSampling
(OptimizationProblem<T> problem, Initializer<T> initializer, ProgressTracker<T> tracker) Constructs an iterative sampling search for a real-valued optimization problem.